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Abstract. We analyse the estimation of a pure d-dimensional quantum state with a finite number of
measurements and compare several estimation schemes. In this paper we concentrate on consecutive von
Neumann measurements on a finite number of identically prepared systems in dimensions d = 2, d = 4
and d = 8. We propose two schemes with different types of fixed measurement directions. Inspired by
integration theory our first approach uses the Halton sequence (a so-called quasi-Monte Carlo sequence)
to obtain measurement directions (‘sampling points’) with high uniformity over the configuration space.
Our second approach extends this idea and optimises the distribution of the measurement directions to
yield a rather high fidelity in quantum state estimation. This optimisation results in a uniform distribution
of the directions and large quantum distances between the directions. Furthermore we establish a link to
mutually unbiased bases.

PACS. 03.65.Wj State reconstruction, quantum tomography – 02.70.Uu Applications of Monte Carlo
methods

1 Introduction

In quantum physics the state vector of a system is the
fundamental object which mathematically describes our
complete knowledge about it [1]. Quantum state estima-
tion [2–4] is the task of obtaining this state description for
an unknown system. The essential boundary condition is
that this system is only available in finitely many copies.
In principle we can further distinguish between estima-
tion of states in an infinite dimensional Hilbert space and
states spanned in finite dimensions.

In our paper we focus on the finite dimensional case. A
typical quantum estimation scenario uses a finite ensemble
of N systems which are identically prepared in the same
unknown quantum state. Characteristic properties of this
state have to be found from measured frequencies. The
schemes presented so far can be divided into two groups.
Optimal extraction of quantum information is achieved
by a collective measurement on the whole ensemble [5–10],
whereas successive single-system measurements [11–15] on
each of the N systems are more feasible for experimental
realisation [13,16,17]. We will restrict our investigation to
single-system measurements.

Besides this, different levels of a priori knowledge of
the unknown quantum state can be considered. The most
important distinction is the one between pure states,
see [8,11,18–20], and mixed states, see [10,12,21–24].
Most of the mentioned works deal with qubit-like sys-
tems. The focus of this paper is to present an operational
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approach for finite resources, that is a finite amount of
copies, which easily extends to higher dimensions. As the
number of needed parameters to describe a mixed state
increases quadratically with the dimension d, but only lin-
early for pure states, we restrict our investigations to the
latter case. That is, we still use a considerable amount of
a priori knowledge. However, the generalisation to mixed
states is, in principle, straightforward.

2 Basic principles of quantum state
estimation

Our estimation process consists of consecutive measure-
ments of specific observables on a finite ensemble of d-level
systems (qudits). We assume that all of these systems are
prepared in the same unknown quantum state |Ψ〉. From
the measured frequencies one can infer the quantum states
using suitable estimators. That is, the estimator provides
us with a prescription to transform measured frequencies
into the estimated quantum state.

In our scheme we only consider consecutive von
Neumann measurements on single systems. This as-
sumption basically reflects current experimental possibili-
ties [13,16]. The corresponding orthonormal measurement
basis for the νth system is denoted by {|Πν

0 〉 , . . . ,
∣
∣Πν

d−1

〉}
and the corresponding measurement outcome by Πν . A
central question of the present paper is the appropriate a
priori choice of a measurement basis which corresponds to
the a priori choice of a specific observable. We will propose
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several methods which are suitable for higher dimensional
systems.

From a limited set of measurement results it is in gen-
eral impossible to get complete knowledge of an arbitrary
(pure) quantum state. Therefore, in general, the result of
our estimation process will be a density operator ρ̂est. We
then can ask, which pure state |Ψ est〉 is closest to ρ̂est,
that is we determine (up to a global phase)

max
ψ

〈ψ| ρ̂est |ψ〉 =
〈

Ψ est
∣
∣ ρ̂est

∣
∣Ψ est

〉

. (1)

If we represent ρ̂est by its spectral decomposition it is
clear, that |Ψ est〉 is the eigenvector corresponding to the
largest eigenvalue of ρ̂est.

To quantify the quality of a single estimation process
we use the fidelity

F (Ψ est|Ψ) ≡ ∣
∣〈Ψ est|Ψ〉∣∣2 , (2)

that is the overlap of the estimated pure state with the
unknown pure state.

In order to quantify the quality of an estimation
scheme we have to average over all possible states to get
a mean fidelity

F =
∫

Ω

dψ F (Ψ est|ψ), (3)

in which
∫

Ω
dψ symbolically denotes the uniform integra-

tion over the complete state space Ω.
The optimal mean fidelity which requires a collective

measurement1 on all N systems in d dimensions is given
by [9]

F
opt ≡ N + 1

N + d
. (4)

We will compare the fidelities of our single-system mea-
surements to this optimal boundary.

3 Notation

An essential ingredient of quantum state estimation is an
appropriate parameterisation of the state

|Ψ〉 =
d−1∑

i=0

ci |i〉 . (5)

In the d-dimensional computational basis
{|0〉 , . . . , |d− 1〉} the complex coefficients ci are given by
a set of 2d parameters. The normalisation

∑d−1
i=0 |ci|2 = 1

reduces this set by one parameter. Moreover, we cannot
determine a global phase of |Ψ〉 and hence it is sufficient
to parameterise |Ψ〉 by 2(d− 1) values. In other words the
Hilbert space of a d-dimensional system is the complex
projective space CP d−1, which can be described using
the Hurwitz parameterisation [26,27] (i.e. generalised

1 It turns out that for this collective measurement one needs
in general the concept of POVM measurements [25].

spherical coordinates). Using d − 1 angles θk ∈ [0, π/2]
and d − 1 angles φk ∈ [0, 2π) for k = 1, 2, . . . , d − 1 we
obtain

c0 = cos θ1
c1 = sin θ1 cos θ2 eiφ1

...
cd−3 = sin θ1 sin θ2 · · · cos θd−2 eiφd−3

cd−2 = sin θ1 sin θ2 · · · sin θd−2 cos θd−1 eiφd−2

cd−1 = sin θ1 sin θ2 · · · sin θd−2 sin θd−1 eiφd−1 . (6)

For uniform distribution over almost all of CP d−1 [27]
we use the ‘polar’ angles φk with probability density
P (φk) = 1/(2π). The ‘azimuthal’ angles θk have to be
taken in a nonuniform way using the probability den-
sity P (θk) = 2k cos(θk) sin(θk)2k−1. In practice this can
be realised by introducing an auxiliary random variable
ξk which is uniformly distributed in [0, 1] and setting
θk = arcsin

(

ξ
1/(2k)
k

)

. Note that for qubits (d = 2) this
parameterisation equals the well-known Bloch picture on
a unit sphere with angles 2θ1 and φ1.

Averaging over the configuration space Ω which is
needed in equation (3) to calculate the mean fidelity is
described by the multi-dimensional integral

∫

Ω

dψ ≡ 1
Vol(Ω)

d−1∏

k=1

π/2∫

0

cos θk(sin θk)2k−1dθk
d−1∏

k=1

2π∫

0

dφk

(7)
with volume

Vol(Ω) =
πd−1

(d− 1)!
. (8)

4 Estimators

We now focus on the problem how we can infer the un-
derlying quantum state after N measurements. Let us
assume that we have found the measurement result Πν

corresponding to the projector |Πν〉〈Πν | for the νth,
ν = 1, . . . , N , measurement. An estimated quantum state,
which is consistent with these results, is given by the sum
of projectors

ρ̂est,Σ
N =

1
N

N∑

ν=1

|Πν〉〈Πν | , (9)

which is motivated by the classical mean. For a given set
of measurement directions this estimator only accounts for
the measured frequencies of the results. It can therefore
be regarded as an incoherent superposition of the mea-
surement results.

A method which in some sense takes into ac-
count that the measured values might stem from a co-
herent superposition is the maximum-likelihood (ML)
ansatz [20,22,28–30]. Its central element is the likelihood
functional which is maximised by the corresponding ML
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estimate. A possible choice for a likelihood functional for
the estimation of a pure state is the overlap

LN (ψ) =
N∏

ν=1

|〈Πν |ψ〉|2 (10)

which represents the likelihood of the measurement se-
quence found for a given state |ψ〉. The estimated state is
then obtained by maximising the likelihood functional

max
ψ

LN (ψ) →
∣
∣
∣Ψ

est,ML
N

〉

. (11)

Another physically motivated ansatz uses a probability
distribution (PD) wN (ψ) over the configuration space Ω
parameterised by 2(d−1) angles as described before. This
probability distribution has to be constructed from the
N measurement results. Then it represents the estimated
state

ρ̂est,PD
N =

∫

Ω

dψ wN (ψ) |ψ〉〈ψ| (12)

with normalisation
∫

Ω dψwN (ψ) = 1. The probability dis-
tribution wN (ψ) develops iteratively from measurement to
measurement [11]. Before the first measurement (a priori)
we know nothing about the underlying state, that is we
start with w0(ψ) ≡ 1/Vol(Ω) which yields ρ̂est,PD

0 = 1
d 1̂.

To update our information that is to update the probabil-
ity distribution after the νth measurement we use Bayes’
rule [31]

wν(ψ) = NP (ψ|Πν)wν−1(ψ) (13)

with normalisation factor N . Here the conditioned prob-
ability

P (ψ|Πν) ≡ 〈ψ|Πν |ψ〉 (14)

clearly depends on the 2(d− 1) angles, equation (6), since
|ψ〉 can be parameterised in analogy to equation (5).

Among the mentioned estimators the PD estimator,
equation (12), accumulates most information. Besides the
location of the estimated state the probability distribu-
tion also contains information about the distribution of
the measurement results (that is the width of the dis-
tribution). This is consistent with our numerical results
presented in Section 6 which proof that the PD estimator
yields the highest average fidelities. However, with increas-
ing d it is more and more complicated to store and handle
wN (ψ) in order to evaluate equation (12). In this cases we
will use the ML estimator. The simple estimator ρ̂est,Σ is
only presented for completeness as it only uses incoherent
superpositions which do not pay attention to the quantum
nature of the described measurements.

Note that all mentioned estimators assure physical re-
sults. Equations (9) and (12) are convex combinations of
projectors and the result clearly is a density operator.
In equation (11) we assure a physical result by writing
and maximising the likelihood functional in terms of pure
states.

5 Construction of measurement bases

As already stated in Section 2 all measurements of our
estimation scheme are given by a set of N von Neumann
measurements defined by the bases {∣∣Π1

0

〉

, . . . ,
∣
∣Π1

d−1

〉},
. . ., {∣∣ΠN

0

〉

, . . . ,
∣
∣ΠN

d−1

〉}. Alternatively we can assume N
unitary operators Û (ν), ν = 1, . . . , N , which, if applied
on the computational basis {|0〉 , . . . , |d− 1〉}, yield the
appropriate measurement state,

|Πν
k 〉 = Û (ν) |k〉 . (15)

If expressed in the computational basis the coefficients of
these states are given by the columns of the corresponding
unitary matrix

U
(ν)
l,k ≡ 〈l| Û (ν) |k〉l=1...d . (16)

We now consider different approaches to calculate our
measurement bases. In principle they can be divided into
two groups: adaptive and non-adaptive ones. In an adap-
tive scheme the next measurement depends on the previ-
ous measurement results whereas in non-adaptive schemes
we use a set of fixed bases which are independent of the
measurement outcomes.

In the following we restrict ourselves to non-adaptive
schemes and propose two different types of (fixed) bases:

1. quasi-Monte Carlo (QMC) bases which are based on
low-discrepancy sequences, see Section 5.2;

2. quantum large distance (QLD) bases which are gen-
erated by optimising the distribution of the bases, see
Section 5.3.

To quantify the quality of a set of measurement bases we
use the mean fidelity, equation (3). The results of the QMC
and QLD schemes are compared to random measurement
bases (RND) which are described in the next section.

5.1 Random bases

The random bases approach (RND) uses N unitary ma-
trices with the elements U (ν)

l,k , equation (16), drawn from
the circular unitary ensemble (CUE) to generate the mea-
surement bases. As described in the previous section, the
columns of each matrix allow us to construct the desired
measurement projectors in the computational basis.

A random matrix from CUE is parameterised by d2

real parameters. The explicit construction of a random
CUE matrix is presented in Appendix A. As we can drop
a global-phase factor for each matrix, we need only d2 − 1
real parameters which can be written in terms of a vector
P̃ν (see Eq. (24) in the appendix for an explicit represen-
tation). Furthermore, for each set of von Neumann mea-
surements we can choose the basis state |Πν

0 〉 as reference
state and drop d − 1 relative phases for the other basis
states |Πν

i 〉, i > 0. Therefore a minimal parameterisation
would only need d2 − 1 − (d − 1) = d(d − 1) real param-
eters. However, we do not know such a parameterisation
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in connection with CUE. Therefore, we use the d2 − 1 di-
mensional parameter vector P̃ν . Mathematically speaking
this corresponds to a surjection from d2 − 1 to d2 − d pa-
rameters which introduces correlations between the d2−1
parameters.

A set of N measurement bases now can be seen as a
set

{P̃1, . . . , P̃N} (17)

of (d2 − 1)-dimensional points P̃ν .

5.2 Quasi-Monte Carlo bases

Inspired by results from numerical integration theory [32]
where low-discrepancy (also called quasi-Monte Carlo) se-
quences perform better than random schemes in the case
of a finite number of points we also investigate their be-
haviour in generating random quantum bases.

A low-discrepancy sequence P̃1, . . . , P̃n, . . . of dimen-
sionality D ≡ d2−1 with P̃ν ∈ [0, 1]⊗D is a sequence with
the property that for all n, the subsequence P̃1, . . . , P̃n
is almost uniformly distributed and P̃1, . . . , P̃n+1 is al-
most uniformly distributed as well. A strict mathematical
definition using the so-called star discrepancy can, for ex-
ample, be found in [33].

A set of N quasi-Monte Carlo measurement bases
P̃1, . . . , P̃N can now be generated by using a low-
discrepancy sequence of dimensionality D and length N .
The representation of P̃ν in the computational basis is
obtained with the help of equations (25) and (26) as well
as the construction principles of a CUE-matrix and is de-
noted in the appendix. Because of this principle, the prop-
erty of almost uniform distribution translates from the
quasi-Monte Carlo sequence to the angles and to the ma-
trices. We should therefore get a set of measurement bases
which are more uniformly distributed in Hilbert space
than the pure random approach. Hence, we expect that
this set of measurement bases is, on average, superior in
quantum estimation compared to the pure random one.

In this work we restrict ourself to the scrambled Halton
sequence [33–35] as a low discrepancy sequence. The con-
struction principles of this sequence are presented in Ap-
pendix B and yield a set of measurement bases, equa-
tion (17).

5.3 Quantum large distance bases

In this section we further extend the idea of N uniformly
distributed bases of dimension d, {∣∣Π1

0

〉

, . . . ,
∣
∣Π1

d−1

〉}, . . .,
{∣∣ΠN

0

〉

, . . . ,
∣
∣ΠN

d−1

〉}. Inspired by the ideas of Jones [18],
we now ‘distribute’ the bases in such a way that the dis-
tance of neighbouring bases is as large as possible.

In a pictorial picture we may think of a measurement
basis as being a ‘spider’ with d charged ‘legs’ representing
the basis states. In order to ensure orthonormality of the
basis states we think of the ‘legs’ being fixed to each other.
Therefore, such a basis ‘spider’ can only evolve as a whole.
In addition, all charges are equal. Our Hilbert space can be

seen as ‘inhabited’ by N equally charged ‘spiders’ which
try to avoid each other.

If the N measurement bases are ‘distributed’ in a uni-
form way we expect better performance, that is higher
fidelity in quantum state estimation, because, on average,
every unknown state |Ψ〉 has the same distance to the
measurement projectors. Hence, we will scan |Ψ〉 quan-
tum mechanically in a quite uniform way.

To achieve this, we start with N randomly oriented
bases (generated, for example, by the RND method, see
Sect. 5.1). We then simulate dynamic evolution of the
system with a ‘repelling force’ inversely proportional to
the square of the distance d(Πν

i , Π
µ
j )2 between two basis

states |Πν
i 〉 and

∣
∣Πµ

j

〉

of two different bases, ν �= µ. For
this work we have only used the Bures distance [36,37]

dB(Πν
i , Π

µ
j )2 = 2(1 − |〈Πν

i |Πµ
j 〉|) , (18)

to simulate the dynamic evolution, but other defini-
tions like the Fubini-Study distance [37] dFS(Πν

i , Π
µ
j ) =

arccos |〈Πν
i |Πµ

j 〉| are also possible.
The evolution is approximated in the following way.

We start by calculating the force acting on
∣
∣Π1

0

〉

by the
states

∣
∣Πν

j

〉

with ν > 1 and j = 0, . . . , d − 1. We have
examined two ways of expressing this force. An obvious
approach is to represent the state

∣
∣Π1

0

〉 ≡ ∣
∣Π1

0 (X 1
0)

〉

=
∣
∣Π1

0 (θ1, . . . , θd−1, φ1, . . . , φd−1)
〉

(19)
in the computational basis using the generalised coordi-
nates

(X 1
0) ≡ (θ1, . . . , θd−1, φ1, . . . , φd−1) (20)

introduced in equation (6). For a first approach we ig-
nore the underlying Fubini-Study metric [38] and treat
θ1, . . . , θd−1 and φ1, . . . , φd−1 like Euclidean coordinates.
With this approximation the evolution starting from rest
can be written as

X 1
0
′ = X 1

0 +
1
2
(∆t)2

N∑

ν=2

d−1∑

j=0

1
dB(X 1

0,X ν
j )2

X 1
0 − X ν

j

dB(X 1
0,X ν

j )

(21)
with dB(X 1

0,X ν
j ) being the distance defined in equa-

tion (18) and expressed by the coordinates of equa-
tion (6). After a small time step ∆t we use Gram-
Schmidt orthonormalisation to get the new (rotated) basis
{∣
∣
∣Π̃1

0

〉

, . . . ,
∣
∣
∣Π̃1

d−1

〉}

. For simplicity, we start every step

from rest2. We then calculate the action of the states |Πν
i 〉,

ν �= 2 on
∣
∣Π2

0

〉

in an analogous way. After orthonormalisa-

tion we then obtain
{∣
∣
∣Π̃2

0

〉

, . . . ,
∣
∣
∣Π̃2

d−1

〉}

. This procedure
is repeated for all bases. After all N measurement bases
have undergone a time step we repeat the whole proce-
dure. In order to randomise the orthogonalisation which

2 Of course, the evolution can also be done including a first
time derivative of X 1

0 in every step, but besides changing the
convergence rate we have confirmed that it does not change
the result of the evolution.
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is always performed in increasing index-ordering and to
apply the action of the repulsion on a different state of
the basis we permute the indices of the states of each ba-
sis before repeating. We stop the evolution if we reach an
equilibrium, that is at one step the absolute value of all
‘forces’ is below some limit. If the procedure does not con-
verge we stop after a predetermined amount of iterations.

If the iteration converges our bases are oriented in such
a way that the (nearest) neighbour distance of each of the
N ×d states in Hilbert space tends to a (local) maximum.
If the iteration does not converge we end up with a some-
how partially optimised set. Nevertheless, we expect that
this distribution is considerably better than random.

The second possibility of implementing the evolution
is to write

∣
∣Π1

0

〉

in terms of its coefficients in the compu-
tational basis, see equation (5), and treat the coefficients
as independent coordinates. Note that in this approach a
time step implemented analogously to equation (21) gen-
erates a non-normalised state which must be re-normalised
before re-orthogonalisation of the bases.

A further possibility to obtain an equilib-
rium distribution of our measurement bases would
be to calculate a global potential measure like
∑

ν �=µ
∑d

i,j=1

(

dB(Πν
i , Π

µ
j )

)−1 for all quantum dis-
tances and then use numerical minimisation. The
difficulty here is the large number N × (d2 − 1) of pa-
rameters for higher dimensions. The quantum correlation
information (Kullback information) is another possible
global quantity [18].

5.3.1 QLD bases and MUB

In the following we establish a connection between our
QLD bases and mutually unbiased bases (MUB) [39–41].

Two d-dimensional orthonormal bases
{|Π0〉 , . . . , |Πd−1〉} and {|Π ′

0〉 , . . . ,
∣
∣Π ′

d−1

〉} are MUB if
and only if

∣
∣〈Πi|Π ′

j〉
∣
∣
2 = 1

d , for every i, j = 0, . . . , d − 1.
It is known that if the dimension d is a prime power, sets
with at most d+ 1 pairwise MUB exist [40,41].

A consequence of equation (18) is that maximisation of
the distance between |Πi〉 and

∣
∣Π ′

j

〉

corresponds to min-

imising the overlap
∣
∣〈Πi|Π ′

j〉
∣
∣
2. In the QLD ansatz we want

to minimise this overlap for all i, j = 0, . . . , d−1. Normal-
isation

1 = 〈Πi|Πi〉 =
d−1∑

j=0

∣
∣〈Πi|Π ′

j〉
∣
∣
2 (22)

implies that this is achieved by
∣
∣〈Πi|Π ′

j〉
∣
∣
2 = 1

d . A set of
MUB is therefore always a set of QLD bases.

For dimensions d ∈ {2, 3, 4, 5} our algorithms produce
sets of N ≤ d+ 1 MUB3. For higher (prime power) values
of d our numerical approaches do not converge to a set of
N ≤ d+ 1 MUB. The reason for this may be the two ap-
proximations in our dynamic description as described in

3 The numerical value of
∣
∣
∣

∣
∣〈Πi|Π ′

j〉
∣
∣
2 − 1

d

∣
∣
∣ is always less than

10−5.

Section 5.3. First, we perform dynamical evolution only on
one basis vector represented by X ν

0 , equation (20), and
re-orthogonalise the basis afterwards instead of rotating
the complete basis. Second, we simplify the calculation by
assuming an Euclidean coordinate space. The mentioned
ansatz with a global potential avoids the first approxima-
tion, but again we do not consider the proper metric.

5.3.2 Visualisation of QLD bases for d = 2

In the 2-dimensional case the QLD bases can be visualised
using the Bloch-vector picture with angles 2θ1 and φ1. A
measurement basis consists of two antipodal points on the
Bloch sphere. Or in a pictorial view, it is a barbell.

For N = 2 and N = 3 the corresponding barbells are
pairwise perpendicular to each other resulting in a maxi-
mal distance of

√
2 for neighbouring points. In the case of

N = 4 bases the situation is more complicated. It turns
out that the QLD bases align with the centres of the faces
of a regular octahedron (with opposite faces forming a ba-
sis). The nearest neighbour distance of this configuration
is equal to

√

4/3. For N = 6 we can again use a Platonic
solid to visualise the QLD bases [18]. The centres of the
faces of a regular dodecahedron or, equivalently, the cor-
ners of an icosahedron, have a nearest neighbour distance

of 4/
√

2(5 +
√

5). The values of these geometrical results
and our numerical optimisation agree perfectly.

In principle, this geometrical picture could also be ex-
tended to higher dimensions. However, for d > 2 the
Bloch-vector picture is more complicated for visualisa-
tion [42,43].

5.4 Discussion

To clarify the different properties concerning uniformity
of our bases we give an example for the distribution of the
measurement bases in dimension d = 2. The Hilbert space
is again visualised using the Bloch sphere with angles 2θ1
and φ1. Figure 1 shows the distribution for N = 8 mea-
surement bases. The metric is incorporated by plotting
the points in (cos 2θ1 − φ1)-space.

In the shown example the QMC approach is clearly
distributed in a more uniform way than the RND ansatz.
But, for example, the points with symbols ‘×’ and ‘�’ are
very close to each other. This is due to the non-optimal
parameterisation mentioned in Section 5.2.

The QLD approach clearly results in the most uniform
distribution of the bases. The pattern of the symbols is
quite regular.

6 Numerical simulations

In this section we present Monte Carlo simulations for
the different estimation scenarios. A scenario is defined
by choosing a certain estimator (Sect. 4) and a measure-
ment basis (Sect. 5). Our main issue is to bring out the
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Fig. 1. The plots show N = 8 measurement bases for qubits (d = 2) on the Bloch sphere, which is represented in (cos 2θ1−φ1)-
space. Each measurement base is given by two antipodal points on the sphere. Each pair of antipodal points is depicted with the
same symbol. From left to right we show the RND, QMC and QLD ansatz for a single run. We can clearly see the uniformity
of the QLD approach.

performance of the desired measurement bases for increas-
ing dimensionality d. Hence we do not present results for
all possible estimators. We restrict ourselves to the prob-
ability distribution (PD) estimator for d = 2 and d = 4.
As the probability-distribution ansatz, equation (12), is
very time-consuming for higher dimensions, we use the
maximum-likelihood (ML) ansatz for d = 8. For all these
cases we compare the average fidelity F , equation (3) to
the optimal fidelity F

opt
, equation (4), as a function of

the finite ensemble size N .

6.1 Principles of the simulation

The average fidelity F , equation (3), is approximated by
Monte Carlo averaging over M (typically 105 to 106)
single-run fidelities Fµ defined according to equation (2),

F =
1
M

M∑

µ=1

Fµ. (23)

For each single run we randomly choose an unknown state4

|Ψ〉, equation (5), and calculate the estimated state |Ψ est〉
as discussed in Section 4.

In case of the probability distribution estimator
ρ̂est,PD, equation (12), the integration is evaluated by
expressing the probability distribution wN (ψ), equa-
tion (13), in terms of sine and cosine functions of the an-
gles θk and φk. The integration can then be performed
term by term with the help of beta functions. It requires
d terms to express a general probability in the computa-
tional basis. Hence, the number of terms grows exponen-
tially with the amount of used resources. Therefore, this
approach is only applicable for d = 2 or d = 4 and a small
number of resources N .

4 For randomly chosen states the QMC and QLD schemes
are unbiased.

Instead of evaluating the integral, equation (12), term
by term one can also use numerical integration5. Instead of
dealing with a huge number of terms we have to deal with
exponentially growing integration space which increases
the number of needed points to achieve a given accuracy.

The maximisation needed to evaluate the maximum-
likelihood estimator ρ̂est,ML, equation (11), is performed
numerically [44].

6.2 Qubits, d = 2

We start with the simplest case, namely two-level systems.
In Figure 2 we present the ratio F

PD
/F

opt
evaluated

with the probability-distribution estimator ρ̂est,PD, equa-
tion (12), and the optimal fidelity F

opt
, equation (4). We

compare randomly chosen (RND) bases (see Sect. 5.1),
quasi-Monte Carlo (QMC) bases (see Sect. 5.2) and quan-
tum large distance (QLD) bases (see Sect. 5.3). We have
chosen the probability-distribution estimator because it
yields the highest average fidelity of all described estima-
tors and it can still be treated numerically for d = 2.

We can clearly see the advantage of the QMC bases
over the random basis. We can also see that for some num-
bersN of resources the Halton set performs better (that is,
yields a higher fidelity) than for others. We do not know
the exact cause of this oscillations as it is a mixture of
the parameter-dimensionality mismatch discussed in Sec-
tion 5.1 and peculiarities of the chosen quasi-Monte Carlo
sequence (scrambled Halton sequence). With increasing
N the QMC bases approach the QLD bases, which deliver
the best values. However, the effort to calculate the QLD
bases is much higher (expressed in the number of per-
formed calculations, i.e. runtime). For N � 15 the effort
for the QLD ansatz pays off, but for a larger amount of
quantum resources the QMC ansatz only has minor losses
in the average fidelity.

5 The sampling points are generated using quasi-Monte
Carlo methods [32].
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Fig. 2. The plot shows F
PD

/F
opt

(for d = 2) as a function of
the total number N of measurements (which equals the number
of resources) for different measurement bases. The averaging
was done by 106 Monte Carlo runs. The numerical error bars
for a 2σ confidence interval are smaller than the symbols used
to plot the data points. The QLD bases (�) yield the best
performance. The QMC choice (+) is better than the random
choice (�) albeit it is less smooth. One reason for this is the non-
optimal parameterisation, see Section 5.1. For larger values of
N it is easier (in terms of runtime) to calculate the QMC-bases
compared to the QLD bases and the average fidelity of these
two cases only slightly differs: QMC is “cheap and good”.

Note that by introducing adaptive measurements [11]
one can obtain F values close to the optimum F

opt
, equa-

tion (4). For qubits this optimisation is feasible, but for
higher dimensional systems (on which we want to set our
focus) it is very hard. Besides this, for 1 ≤ N ≤ 20 the
adaptive scheme yields at most 1% higher fidelity than
our QLD scheme, but for higher dimensions the situation
may be different. However, in this paper we focus on rel-
atively simple estimation schemes based on a fixed set of
measurement operators.

Note also that the average fidelity F is a monotonic
increasing function of N . Despite this, the ratio F/F

opt
is,

in general, a non-monotonic function because the different
fidelities scale differently for increasing N .

We further mention that for N = d + 1 = 3 our QLD
bases form a maximal set of MUB (see Sect. 5.4) which
explains the good performance in this case.

6.3 Qudits, d = 4

For d = 4 (two qubits) the probability distribution esti-
mator ρ̂est,PD, equation (12), is already hard to calculate.
Due to the exponentially growing number of terms in the
beta-function evaluation, we use numerical integration to
evaluate F

PD
, equation (3).

Again, the quasi-Monte Carlo bases perform better
than the pure random choice. Compared to d = 2 the
benefit is, however, much smaller. This is due to the men-
tioned correlations in our parameterisation. In two dimen-
sions the effect was small but this will not be the case for
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Fig. 3. In analogy to Figure 2 we present F
PD

/F
opt

for d = 4.
The data were obtained by averaging over 25 × 103 Monte
Carlo runs for each number N of measurements. Due to the
complexity of evaluating the integral the data set consists of
a smaller number of runs which results in larger error bars
(the omitted 2σ confidence interval is still about the size of
the symbols). The qualitative behaviour is as in the qubit-
case. The QMC curve (+) is more smooth and shows only a
small benefit in comparison to the random curve (�). Our QLD
approach (�) again yields the highest fidelity. The small spike
for N = 5 is a consequence of the estimation using mutually
unbiased bases.

higher dimensions. The QLD bases again yield the best es-
timation. For N = d+ 1 = 5 our QLD bases form a maxi-
mal set of MUB which results in a small peak of F

PD
/F

opt

(see Fig. 3).

6.4 Qudits, d = 8

As the evaluation of the integrals for the PD estimator
ρ̂est,PD, equation (12), turns out to be very extensive al-
ready for d = 4, we restrict our analysis for three qubits
(d = 8) to the maximum-likelihood estimator ρ̂est,ML,
equation (11). The corresponding results of our simula-
tions are shown in Figure 4. The QMC bases yield only
a very small benefit in comparison to the RND ansatz.
Using other low-discrepancy sequences [33] may increase
the benefit. We have also analysed the Hammersley se-
quence [33,45], which is quite similar to the Halton se-
quence, and did not observe considerable changes. But, so
far, we did not investigate other sequences. Therefore, the
dominant reason for the small benefit may be again the
previously mentioned mismatch in parameter dimensions.
As in the other cases, the QLD bases again yield the best
estimation. Due to the approximations in the construc-
tion of the QLD bases (see Sect. 5.3.1), we do not see the
MUB-peak for N = d+ 1 = 9 resources. Nevertheless the
QLD ansatz performs considerably better than RND and
QMC.

To get an idea of the closeness of our QLD bases for
N = 9 resources we have compared it to the MUB given
by Lawrence et al. in [46]. Averaged over 106 Monte Carlo
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Fig. 4. F
ML

/F
opt

for d = 8 evaluated with 106 Monte Carlo
runs. Our QMC ansatz (+) only yields a very small enhance-
ment compared to the random case (RND, �) while the dis-
tributed bases (QLD, �) enhances the estimation fidelity.

runs the MUB yield about 1.8% higher fidelity than our
QLD optimisation.

As an interesting remark we mention that in the
QLD case the simple projector-sum estimator ρ̂est,Σ, equa-
tion (9), yields slightly higher average fidelities F than the
maximum-likelihood estimator, equation (11). This is due
to the high uniformity of the QLD bases. This indicates
that the chosen likelihood function, equation (10), may
not be the best choice for the quantum state estimation
task. As the intention of this paper are the different mea-
surement bases we do not further address this question
here.

7 Conclusions

In this paper we have investigated quantum state esti-
mation for higher dimensions. We have presented and
compared several ways of generating a fixed set of mea-
surement bases. Our main aspect is the concept of Quan-
tum Large Distances (QLD) which in some sense is sim-
ilar to ideas presented by Jones in 1991 [18]. The QLD
ansatz distributes the measurement bases in such a way
in the configuration space that the Hilbert space is uni-
formly covered. We achieve this by maximising the (near-
est) neighbour distance of the states describing the mea-
surement. Another ansatz to obtain a set of measurement
bases is the use of the circular unitary ensemble (CUE).
We have examined two ways of generating the CUE. Us-
ing random numbers (RND) and, on the other hand, using
quasi Monte Carlo (low-discrepancy) sequences (QMC).

In addition we have given different approaches for
quantum estimators. As the intention of this paper is the
construction of measurement bases, we have, however, not
presented a detailed analysis about this topic. Depending
on the dimensionality, we have used the most suitable one
for each case.

We have numerically compared the average fidelities F
and the optimal fidelity F

opt
for d = 2, d = 4 and d = 8 for

different amounts N of finite resources. The QLD ansatz

is always superior to the CUE bases approaches RND and
QMC. Of course, in the limit N → ∞ they asymptotically
reach the optimal value F

opt
.

As the dimensionality increases the average fidelity for
the QMC bases and the RND bases become very close.
For d = 8 the difference is only minor, whereas for d =
2 the QMC ansatz yields a clear improvement. In terms
of complexity the QMC method requires only marginal
additional effort compared to RND. In contrast, the QLD
method requires considerably more effort than RND but
yields a clear improvement of the average fidelity. And,
as noted in the previous section, due to its uniformity it
can also be evaluated using the simplest estimator ρest,Σ ,
equation (9).

We acknowledge financial support by the Deutsche Forschungs-
gemeinschaft within the Schwerpunktprogramm Quanten-
Informationsverarbeitung (SPP1078) and by the European
Commission network CONQUEST.

Appendix A: Circular unitary ensemble

According to [26,47] a parameterisation of CUE
can be obtained by decomposing the unitary matrix
U = (Ul,k), equation (16), into the elementary operations
of two-dimensional subspaces E(i,j)(φ, ψ, χ) with non-zero
elements

(E(i,j))kk = 1, k = 1, . . . , d, k �= i, j

(E(i,j))ii = cosφ eiψ, (E(i,j))ij = sinφ eiχ

(E(i,j))ji = − sinφ e−iχ, (E(i,j))jj = cosφ e−iψ .

With the help of the composite rotations

E1 = E(1,2)(φ1,2, ψ1,2, χ1,2)

E2 = E(2,3)(φ2,3, ψ2,3, 0)E(1,3)(φ1,3, ψ1,3, χ1,3)

E3 = E(3,4)(φ3,4, ψ3,4, 0)E(2,4)(φ2,4, ψ2,4, 0)

× E(1,4)(φ1,4, ψ1,4, χ1,4)
...

Ed−1 = E(d−1,d)(φd−1,d, ψd−1,d, 0)

× E(d−2,d)(φd−2,d, ψd−2,d, 0)

× · · · ×E(1,d)(φ1,d, ψ1,d, χ1,d),

a general unitary matrix is then described by
U = eiαE1E2 . . . Ed−1.

Every transformation Ei appears once and only once.
If we restrict φr,s to the interval [0, π2 ] and choose ψr,s,
χ1,s and α from [0, 2π) we have found a parameterisation
of a matrix U drawn from CUE in terms of the d2 − 1
dimensional parameter vector

P =
(

φ1,2, . . . , φ1,d, φ2,3, . . . , φ2,d, . . . φd−1,d,

ψ1,2, . . . , ψ1,d, ψ2,3, . . . , ψ2,d, . . . ψd−1,d,

χ1,2, . . . , χ1,d

)

(24)

and the global phase α.
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A uniform distribution6 of the matrices can be ob-
tained by introducing auxiliary random variables φ̃r,s,
ψ̃r,s, χ̃1,s and α̃ which are uniformly distributed in the
interval [0, 1] and setting

φr,s = arcsin
(

(φ̃r,s)1/2r
)

, ψr,s = 2πψ̃r,s ,

χ1,s = 2πχ̃1,s , α = 2πα̃ . (25)

For our purposes we can always choose α̃ ≡ 0 as its only
effect is multiplication of every basis state by a constant
phase, which cancels out in the corresponding measure-
ment projectors. Then

P̃ =
(

φ̃1,2, . . . , φ̃1,d, φ̃2,3, . . . , φ̃2,d, . . . φ̃d−1,d,

ψ̃1,2, . . . , ψ̃1,d, ψ̃2,3, . . . , ψ̃2,d, . . . ψ̃d−1,d,

χ̃1,2, . . . , χ̃1,d

)

(26)

defines a point in the d2 − 1 dimensional unit-cube which
characterises a random matrix drawn from CUE.

Appendix B: The scrambled Halton sequence

A key ingredient to calculate the points of the Halton
sequence [33,34] is the b-adic representation of the integer
number

ν =
∞∑

k=0

αkb
k , αk ∈ {0, . . . , b− 1} . (27)

The radical inverse function of ν to the basis b is then
defined as

Φb(ν) =
∞∑

k=0

αkb
−k−1 (28)

and has the effect of mirroring the b-adic representation
of ν, equation (27), at the decimal point, e.g. Φ10(123) =
0.321. Denoting the ith prime number as b(i), the νth
point of a D-dimensional Halton sequence can then be
written as {Φb(1)(ν), Φb(2)(ν), . . . , Φb(D)(ν)}.

To reduce correlations (esp. in higher dimensions), we
use the permutations by Faure [35] to introduce scram-
bling in the radical inverse function. The permutations
σb are constructed in an iterative way by starting with
σ1 = (σ1(0)) = (0). For even b, σb is constructed7 by
taking 2σb/2 and appending 2σb/2 + 1.

For odd b, σb is derived from σb−1 by incrementing each
value which is ≥ b−1

2 and inserting b−1
2 in the middle. The

first permutations consequently are (we omit σ1 = (0))

σ2 = (0, 1), σ3 = (0, 1, 2),
σ4 = (0, 2, 1, 3), σ5 = (0, 3, 2, 1, 4), . . .

6 We refer to uniform distributions according to the appro-
priate Haar measure [26].

7 Writing a×σb +c is a short-hand notation for applying the
linear transformation to every element of σb, that is multiplying
every element by a and then adding c.

The radical inverse function can then be modified to

Φ′
b(ν) =

∞∑

k=0

σb(αk)b−k−1. (29)

By again denoting the ith prime number as b(i), we can
finally assign the scrambled Halton sequence to our pa-
rameter vectors via

P̃ν = {Φ′
b(1)(ν), Φ

′
b(2)(ν), . . . , Φ

′
b(D)(ν)} . (30)
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46. J. Lawrence, Č. Brukner, A. Zeilinger, Phys. Rev. A 65,
032320 (2002)
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